A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements
نویسندگان
چکیده
In this paper, we developed a general framework for the inversion of electromagnetic measurements in cases where parametrization of the unknown configuration is possible. Due to the ill-posed nature of this nonlinear inverse scattering problem, this parametrization approach is needed when the available measurement data are limited and measurements are only carried out from limited transmitter-receiver positions (limited data diversity). By carrying out this parametrization, the number of unknown model parameters that need to be inverted is manageable. Hence the Newton based approach can advantageously be used over gradient-based approaches. In order to guarantee an error reduction of the optimization process, the iterative step is adjusted using a line search algorithm. Further unlike the most available Newton-based approaches available in the literature, we enhanced the Newton based approaches presented in this paper by constraining the inverted model parameters with nonlinear transformation. This constrain forces the reconstruction of the unknown model parameters to lie within their physical bounds. In order to deal with cases where the measurements are redundant or lacking sensitivity to certain model parameters causing non-uniqueness of solution, the cost function to be minimized is regularized by adding a penalty term. One of the crucial aspects of this approach is how to determine the regularization parameter determining the relative importance of the misfit between the measured and predicted data and the penalty term. We reviewed different approaches to determine this parameter and proposed a robust and simple way of choosing this regularization parameter with aid of recently developed multiplicative regularization analysis. By combining all the techniques mentioned above we arrive at an effective and robust parametric algorithm. As numerical examples we present results of electromagnetic inversion at induction frequency in the deviated borehole configuration. 266 Habashy and Abubakar
منابع مشابه
Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملA new method for 3-D magnetic data inversion with physical bound
Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004